Routine Name: powerMethod
Author: Brandon Furman
Language: C++
Description/Purpose: The purpose of this function is to calculate the largest eigenvalue of a given square matrix using the Power Method.
Input: This function requires the following 4 items as inputs:
Output: This function returns a double precision number that is the largest eigenvalue of the given matrix.
Usage/Example: Usage of this function is straightforward. The following code finds the largest eigenvalue of a Hilbert matrix of size 8:
int m = 8;
int maxIter = 10;
double tol = 1e-4;
//Create a Hilbert matrix.
array2D A;
A = HilbertMat(m);
//Create an initial guess for
//the eigenvector corresponding
//to the largest eigenvalue.
array1D v0;
v0 = oneVec(m);
//Find the largest eigenvalue of A.
double ev1 = 0.0;
ev1 = powerMethod(A, v0, tol, maxIter);
std::cout << ev1;
This code outputs the following to console:
1.69594
which can be easily verified as the largest eigenvalue of Hilbert Matrix of size 8.
Implementation/Code: The powerMethod() function is implemented as follows:
double powerMethod(array2D& A, array1D v, double tol, int maxIter) {
int m = A.getRows();
int n = A.getCols();
int l = v.getLength();
if (m != n || m != l) {
throw "powerMethod: Incompatible Sizes";
}
array1D vt;
vt.allocateMem(m);
int cntr = 0;
double norm = 0.0;
double ev = 0.0;
double sum = 0.0;
double error = 10.0*tol;
while (error > tol && cntr < maxIter) {
cntr += 1;
//Calculate vt = Av_(k-1) and ||vt||.
norm = 0.0;
for (int i = 0; i < m; i++) {
sum = 0.0;
for (int j = 0; j < m; j++) {
sum += A(i, j)*v(j);
}
vt(i) = sum;
norm += sum * sum;
}
norm = sqrt(norm);
//Calculate v_k = vt / ||vt||
for (int i = 0; i < m; i++) {
v(i) = vt(i) / norm;
}
//Calculate the eigenvalue using
//ev = (v^T)_k A v_k
ev = 0.0;
for (int i = 0; i < m; i++) {
sum = 0.0;
for (int j = 0; j < m; j++) {
sum += A(i, j)*v(j);
}
ev += v(i)*sum;
}
//Calculate the L2 norm of A(v_k) - ev(v_k)
//This L2 norm is used as the stopping criteria
error = 0.0;
for (int i = 0; i < m; i++) {
sum = 0.0;
for (int j = 0; j < m; j++) {
sum += A(i, j)*v(j);
}
sum = sum - ev * v(i);
error += sum * sum;
}
error = sqrt(error);
}
return ev;
}
Last Modified: April/2019